Studying heavy-ion collisions exploiting high-pt particles at STAR The 6th International Workshop of high-pt particles Utrecht, Netherlands 4-7th April, 2011 Ahmed Hamed for the TAR Collaboration (Texas A&M University) \triangleright STAR probes 0.001 < x < 0.2 in PDF at $\sqrt{s} = 200 \text{ GeV}$ η coverage of STAR detectors East - At mid and forward η - * At low and high p_T - Considerable capabilities for particle identifications - * Reasonable efficiency for particle reconstructions **EMC** **FGT** # Contents - * Lessons from high-p_T era before RHIC - * Methods of exploiting high-pt particles and STAR capabilities - * Answered and unanswered questions from STAR high-p_T measurements A particular focus of this talk is to discuss to what extent the high-p_T particles produced (STAR) can be taken as evidence for the RHIC paradigm of jet quenching "Parton traverses QDC medium (partonic matter) and loses energy". # High-pt particles: era before RHJC Produced from jet fragmentation of partons scattered with large Q^2 Rates: framework of pQCD in terms of the asymptotically free pointlike parton - o **DIS off nuclei and Drell-Yan process on nuclear target**: nPDF is **universal** and **factorization** holds up to NLO. - What about the FFs (Fragment distributions in jet energy)? in NN collisions and in AA collisions? # Methods of exploiting high-pt ### Particle level: \triangleright Leading particle (spectra and R_{AA}) $$R_{AB} = \frac{dN_{AB}^h}{< N_{coll} >_f dN_{NN}^h}$$ > Fragment distributions in leading particle momentum (near and away-sides) and I_{AA} $$D = (1/N_{trig})dN/d(\Delta\phi) \quad I_{AA} = \frac{D_{AA}}{D_{NN}}$$ ### **Parton level:** - ➤ Jet reconstructions < - Direct γ # STAR capabilities at high-pt ### **Particle level:** ### > Spectra Different particles : different coupling to the medium and different $\tau_{\rm form}$ (γ , π^{\pm} , π^{0} , K, ρ , η , ω , Φ , p, pbar, Λ , Ξ ..., J/ψ , Y,..., W^{\pm}) ### **Correlations** - 1. Two particle correlations in Φ , and η \circ At mid η \circ At forward η - 2. Multi particle correlations in Φ, η - 3. Correlation w.r.t reaction plane ### **Parton level:** > Spectra and correlations for direct γ and jets ## Answered and unanswered questions - STAR STAR:124 papers of which 48 papers in high-pt for inclusive and different particles at different energy and collision systems. ### Group I - * Is AA collision an incoherent superposition of NN/NA collisions? - * Does NA collisions resemble NN collisions? - * What is the role of the precursor state, the proposed CGC, if it exists? Inclusive particles are sufficient to address these questions ### Group II - * Hadron suppression: Hadronic absorption and/or partonic energy loss? - * What is the mechanism of energy loss (radiative/elastic)? - * What is the functional form of energy loss (E,L,C_R,f)? Identified particles and access to parton level are needed to address these questions ### The basic question ➤ Whether AA creates a medium long-lived and extend over sizable volume and reached the thermodynamics limit to have particular thermodynamic and transport properties.?! ### Group I * Is AA collision an incoherent superposition of NN/NA collisions? $$E\frac{d^3\sigma}{dp^3}(p_T, A) = E\frac{d^3\sigma}{dp^3}(p_T, 1)A^{\alpha(p_T)}$$ * Does NA collisions resemble NN collisions? * What is the role of the precursor state, the proposed CGC, if it exists? # Correlations in pseudorapidity 0.16 0.14 0.12 0.1 0.06 0.04 Au+Au central, ZYAM normalization $P_{t,trig}$ [GeV/c] - \triangleright Ridge correlated with jet direction and independent of trigger p_T and $\Delta\eta$ within current uncertainties. Ridge mechanisms? - \triangleright AA collision is not simple incoherent superposition of NA collisions from $\Delta\eta$ dimension Long range # Spectra at mid rapidity - AA collision is not simple incoherent superposition of NN collisions, assuming MC Glauber. - ➤ Could it be initial state effect? - ✓ But deviation from unity increases with multiplicity/centrality. # Spectra and correlations at mid rapidity \triangleright di-jet suppression at higher p_T ? $\pi/2$ $\Delta \phi$ (radians) Correlations at mid rapidity "higher pt" ### Preprint: arXiv1102.2669 # Di-jet trigger trig1: $$5 < p_T^{trig1} < 10 \, \mathrm{GeV/c}$$ trig2: $$4 < p_T^{trig2} < p_T^{trig1}$$ (back-to-back, $$|\phi_{trig1} - \phi_{trig2}| \le \pi \pm 0.2$$) assoc: 1.5 GeV/ $$c < p_T^{\rm assoc} < p_T^{\rm trig1}$$ ### 200 GeV Au+Au (squares) and d+Au (circles) Similar away and near sides for AuAu and dAu ✓ Are these tangential emission/non interacting jets "punch through"? # Correlations w.r.t reaction plane Phys. Rev. Lett. 93 (2004) 252301 v_2 at high p_T is finite positive! Jet quenching : energy loss dependence of path length \triangleright The measured value of elliptic flow at high p_T is larger than the possible value from surface emission scenario. Spectra and correlations at forward rapidity π^0 spectra in pp and dAu collisions checked against pQCD and then R_{dAu} is obtained \triangleright Charged particles and π^0 are suppressed in the forward direction Consistent with saturation at low x -----> mono-jet "qualitatively consistent with CGC" Group I | Questions | Midη | Forwardη | Measurements | Remarks | |---|------------------------------|---------------------|--|--| | Is AA collision an incoherent superposition of NN/NA collisions? | No | ; | Spectra and two/multi particle correlations in η and Φ and correlations w.r.t reaction plane | Final state effect, surface bias emission?, inconsistency with v ₂ ? non- interacting jets?, ridge? | | Does NA collisions resemble NN collisions? | Yes except for Cronin effect | No | Spectra and two particle correlations in η and Φ | Onset of saturation at forward rapidity | | What is the role of
the precursor state,
the proposed CGC, if
it exists? | 5 | Onset of saturation | Spectra and two particle correlations in Φ | Onset of saturation at forward rapidity, CGC? | ### Group II ★ Hadron suppression: Hadronic absorption and/or partonic energy loss?✓ Hadronic or partonic order? * What is the mechanism of energy loss (radiative/elastic)? ✓ Heavy and light quarks - * What is the functional form of energy loss (E,L,C_R,f) ? - ✓ Access to the underlying scale "partonic level" Hadronic and/or partonic suppressions All particle spectra in pp collisions checked against pQCD and then R_{AA} is obtained $R_{AA}(p+\bar{p}) \sim R_{AA}(K) \sim R_{AA}(\pi) \sim R_{AA}(\rho)$ Neither unique hadronic order, nor partonic order over the entire range, only quark number order in AuAu and dAu at intermediate p_T ✓ Different production mechanisms, different formation time for different particles. # Hadronic and/or partonic collectivity ✓ Hadronic order at low p_T and quark number order at intermediate p_T ➤ Scaling with quark number suggests partonic collectivity ✓ Light and s-quark have similar v_2 — pre-hadronic collectivity Inelastic and/or elastic energy loss - ✓ Unexpected level of suppression for non-photonic electrons, Collisional energy loss? Bottom contributions? Requires direct measurements for c- and b- hadrons - \triangleright J/ ψ yield is consistent with no suppression at high p_T STAR is capable to do a lot more "Jaro's talk" # Functional form of energy loss ✓ Associated yields in p+p and Au+Au are well described by theoretical models. ### o similar level and pattern of suppression - o Effect of fluctuations in energy loss dominates over the effect of geometry?! - o Energy loss dependence of parton initial energy smeared out the expected differences?! # Functional form of energy loss The energy loss dependence on path length, color factor, and parton initial energy is not observed within the covered kinematic range $$> v_2^{\pi^0} \approx v_2^{ch} \approx 3*v_2^{\gamma_{dir}}$$ Is it reaction plane bias, possible path length dependence of energy loss, and/or fragmentation photon contributions? # Functional form of energy loss - ➤ Jet cross section at mid rapidity is consistent with NLO pQCD over many orders of magnitude - > Suggestive broadening of jets in AuAu collisions compared to jets in pp collisions STAR is capable to do a lot more "Jan's talk" Group II | Questions | Exp | Theory | Measurements | Remarks | |--|-----|--|--|--| | Hadron suppression: Hadronic absorption and/or partonic energy loss? | .5 | Partonic energy loss for light quark | Spectra and correlations w.r.t reaction plane for many identified hadrons with different quarks contents | Th: suppression is too large to be described by hadronic absorption for light quarks. Exp: Neither hadronic nor partonic hierarchy, scaling with quark number at intermediate PT | | What is the mechanism of energy loss (radiative/elastic)? | | ? | Spectra, two particle correlations in Φ, and correlation w.r.t reaction plane for heavy quarks | Exp: Unexpected level of suppression for non-photonic electrons. | | What is the functional form of energy loss (E,L,C _R ,f)? | 5 | E,
ln(E), \sqrt{E} ,
L ² ,L,C _R ,f | Spectra and two particle correlations in Φ for direct photon spectra and jet-hadron correlation in Φ . | Exp: No strong dependence on E, L, C_R , f is observed | $[\]mathbf{x}$ For two particle correlations in Φ , and correlation w.r.t reaction plane for heavy quarks and jet-hadron correlation in Φ see Jaro's and Jan's talks respectively. # Summary \triangleright Single hadron and di-jet analysis in NN, NA, and AA establish the final state effect in AA at mid η and the onset of saturation at forward η . A particular focus of this talk was to discuss to what extent the high- p_T particles produced (STAR) can be taken as evidence for the RHIC paradigm of <u>jet quenching</u> "Parton traverses QDC medium (partonic matter) and loses energy". Theory - experiment comparison seems to favor the partonic energy loss (light quarks) over the hadronic absorptions in partonic and/or hadronic matter. ### The basic question Whether AA creates a medium long-lived and extend over sizable volume and reached the thermodynamics limit to have particular thermodynamic and transport properties.?! is awaiting future measurements of more evident results and